与常规知识蒸馏(KD)不同,自我KD允许网络在没有额外网络的任何指导的情况下向自身学习知识。本文提议从图像混合物(Mixskd)执行自我KD,将这两种技术集成到统一的框架中。 Mixskd相互蒸馏以图形和概率分布在随机的原始图像和它们的混合图像之间以有意义的方式。因此,它通过对混合图像进行监督信号进行建模来指导网络学习跨图像知识。此外,我们通过汇总多阶段功能图来构建一个自学老师网络,以提供软标签以监督骨干分类器,从而进一步提高自我增强的功效。图像分类和转移学习到对象检测和语义分割的实验表明,混合物KD优于其他最先进的自我KD和数据增强方法。该代码可在https://github.com/winycg/self-kd-lib上找到。
translated by 谷歌翻译
多元时间序列(MTS)预测在广泛的应用中起着至关重要的作用。最近,由于其最先进的性能,空间 - 周期性图神经网络(STGNN)已成为越来越流行的MTS预测方法。但是,随着绩效的有限改善,最近的工作变得越来越复杂。这种现象激发了我们探索MTS预测和设计模型的关键因素,该模型与STGNN一样强大,但更简洁,效率更高。在本文中,我们将样品在空间和时间维度中的不可区分性确定为关键瓶颈,并通过连接空间和时间身份信息(STID)提出了一个简单而有效的MTS预测基线,该信息可同时实现最佳性能和效率基于简单的多层感知器(MLP)。这些结果表明,只要它们解决样品的不可区分性,而无需限于STGNN,我们就可以设计高效有效的模型。
translated by 谷歌翻译
无监督的时间序列异常检测对各种域中目标系统的潜在故障有助于。当前的最新时间序列异常检测器主要集中于设计高级神经网络结构和新的重建/预测学习目标,以尽可能准确地学习数据正常(正常模式和行为)。但是,这些单级学习方法可以被训练数据中未知异常(即异常污染)所欺骗。此外,他们的正常学习也缺乏对感兴趣异常的知识。因此,他们经常学习一个有偏见的,不准确的正态边界。本文提出了一种新型的单级学习方法,称为校准的一级分类,以解决此问题。我们的单级分类器以两种方式进行校准:(1)通过适应性地惩罚不确定的预测,这有助于消除异常污染的影响,同时强调单级模型对一级模型有信心的预测,并通过区分正常情况来确定(2)来自本机异常示例的样本,这些样本是根据原始数据基于原始数据模拟真实时间序列异常行为的。这两个校准导致耐污染的,异常的单级学习,从而产生了显着改善的正态性建模。对六个现实世界数据集进行的广泛实验表明,我们的模型大大优于12个最先进的竞争对手,并获得了6%-31%的F1分数提高。源代码可在\ url {https://github.com/xuhongzuo/couta}中获得。
translated by 谷歌翻译
无教师的在线知识蒸馏(KD)旨在培训多个学生模型的合奏,并彼此提炼知识。尽管现有的在线KD方法实现了理想的性能,但它们通常专注于阶级概率作为核心知识类型,而忽略了宝贵的特征代表性信息。我们为在线KD提供了一个相互的对比学习(MCL)框架。 MCL的核心思想是以在线方式进行对比分布的相互交互和对比度分布的转移。我们的MCL可以汇总跨网络嵌入信息,并最大化两个网络之间的相互信息的下限。这使每个网络能够从他人那里学习额外的对比知识,从而提供更好的特征表示形式,从而提高视觉识别任务的性能。除最后一层外,我们还将MCL扩展到辅助特征细化模块辅助的几个中间层。这进一步增强了在线KD的表示能力。关于图像分类和转移学习到视觉识别任务的实验表明,MCL可以针对最新的在线KD方法带来一致的性能提高。优势表明,MCL可以指导网络生成更好的特征表示。我们的代码可在https://github.com/winycg/mcl上公开获取。
translated by 谷歌翻译
多元时间序列(MTS)预测在广泛的应用中起着至关重要的作用。最近,时空图神经网络(STGNN)已成为越来越流行的MTS预测方法。 STGNN通过图神经网络和顺序模型共同对MTS的空间和时间模式进行建模,从而显着提高了预测准确性。但是受模型复杂性的限制,大多数STGNN仅考虑短期历史MTS数据,例如过去一个小时的数据。但是,需要根据长期的历史MTS数据来分析时间序列的模式及其之间的依赖关系(即时间和空间模式)。为了解决这个问题,我们提出了一个新颖的框架,其中STGNN通过可扩展的时间序列预训练模型(步骤)增强。具体而言,我们设计了一个预训练模型,以从非常长期的历史时间序列(例如,过去两周)中有效地学习时间模式并生成细分级表示。这些表示为短期时间序列输入到STGNN提供了上下文信息,并促进了时间序列之间的建模依赖关系。三个公共现实世界数据集的实验表明,我们的框架能够显着增强下游STGNN,并且我们的训练前模型可恰当地捕获时间模式。
translated by 谷歌翻译
我们都取决于流动性,车辆运输会影响我们大多数人的日常生活。因此,预测道路网络中流量状态的能力是一项重要的功能和具有挑战性的任务。流量数据通常是从部署在道路网络中的传感器获得的。关于时空图神经网络的最新建议通过将流量数据建模为扩散过程,在交通数据中建模复杂的时空相关性方面取得了巨大进展。但是,直观地,流量数据包含两种不同类型的隐藏时间序列信号,即扩散信号和固有信号。不幸的是,几乎所有以前的作品都将交通信号完全视为扩散的结果,同时忽略了固有的信号,这会对模型性能产生负面影响。为了提高建模性能,我们提出了一种新型的脱钩时空框架(DSTF),该框架以数据驱动的方式将扩散和固有的交通信息分开,其中包含独特的估计门和残差分解机制。分离的信号随后可以通过扩散和固有模块分别处理。此外,我们提出了DSTF的实例化,分离的动态时空图神经网络(D2STGNN),可捕获时空相关性,还具有动态图学习模块,该模块针对学习流量网络动态特征的学习。使用四个现实世界流量数据集进行的广泛实验表明,该框架能够推进最先进的框架。
translated by 谷歌翻译
孤立森林(Iforest)近年来已经成为最受欢迎的异常检测器。它迭代地在树结构中执行轴平行的数据空间分区,以将偏差的数据对象与其他数据隔离,并且定义为异常得分的对象的隔离难度。 iForest在流行的数据集基准中显示出有效的性能,但其基于轴平行的线性数据分区无效地处理高维/非线性数据空间中的硬异常,甚至更糟糕的是,它导致了臭名昭著的算法偏见。为人工制品区域分配了出乎意料的较大的异常得分。有几个扩展的Iforest,但它们仍然专注于线性数据分区,无法有效地隔离这些硬异常。本文介绍了iforest,深层隔离森林的新型扩展。我们的方法提供了一种综合的隔离方法,可以在任何大小的子空间上任意将数据任意划分数据,从而有效地避免了线性分区中的算法偏置。此外,它仅需要随机初始化的神经网络(即,我们的方法中不需要优化)来确保分区的自由。这样一来,可以完全利用基于网络的随机表示和基于随机分区的隔离的所需随机性和多样性,以显着增强基于隔离集合的异常检测。此外,我们的方法还提供了数据型 - 敏捷的异常检测解决方案。通过简单地插入功能映射中的随机初始化的神经网络来检测不同类型数据中的异常。大量现实数据集的广泛经验结果表明,我们的模型对基于最新的隔离和基于非异常的异常检测模型有了显着改善。
translated by 谷歌翻译
现有作品通常集中于减少架构冗余以加速图像分类,但忽略输入图像的空间冗余。本文提出了有效的图像分类管道来解决此问题。我们首先通过称为Anchornet的轻量级补丁提案网络在输入图像上查明任务感知区域。然后,我们将这些局部语义斑块的空间冗余量喂入一般分类网络。与Deep CNN的流行设计不同,我们旨在仔细设计无中间卷积桨的锚固板的接收场。这样可以确保从高级空间位置到特定输入图像补丁的确切映射。每个补丁的贡献是可以解释的。此外,AnchOrnet与任何下游架构兼容。 Imagenet上的实验结果表明,我们的方法优于SOTA动态推理方法,其推理成本较少。我们的代码可在https://github.com/winycg/anchornet上找到。
translated by 谷歌翻译
如今,知识图(KGS)一直在AI相关的应用中发挥关键作用。尽管尺寸大,但现有的公斤远非完全和全面。为了不断丰富KG,通常使用自动知识结构和更新机制,这不可避免地带来充足的噪音。然而,大多数现有知识图形嵌入(KGE)方法假设KGS中的所有三重事实都是正确的,并且在不考虑噪声和知识冲突的情况下将实体和关系投入到低维空间。这将导致kgs的低质量和不可靠的表示。为此,本文提出了一般的多任务加固学习框架,这可以大大缓解嘈杂的数据问题。在我们的框架中,我们利用强化学习来选择高质量的知识三分石,同时过滤出嘈杂的。此外,为了充分利用语义类似的关系之间的相关性,在具有多任务学习的集体方式中训练了类似关系的三重选择过程。此外,我们扩展了流行的KGE Models Transe,Distmult,与所提出的框架耦合和旋转。最后,实验验证表明,我们的方法能够增强现有的KGE模型,可以在嘈杂的情景中提供更强大的KGS表示。
translated by 谷歌翻译
为了减轻阴影衰落和障碍物阻塞的影响,可重新配置的智能表面(RIS)已经成为一种有前途的技术,通过控制具有较少硬件成本和更低的功耗来改善无线通信的信号传输质量。然而,由于大量的RIS被动元件,准确,低延迟和低导频和低导架频道状态信息(CSI)采集仍然是RIS辅助系统的相当大挑战。在本文中,我们提出了一个三阶段的关节通道分解和预测框架来要求CSI。所提出的框架利用了基站(BS)-RIS通道是准静态的两次时间段属性,并且RIS用户设备(UE)通道快速时变。具体而言,在第一阶段,我们使用全双工技术来估计BS的特定天线和RIS之间的信道,解决信道分解中的关键缩放模糊问题。然后,我们设计了一种新型的深度神经网络,即稀疏连接的长短期存储器(SCLSTM),并分别在第二和第三阶段提出基于SCLSTM的算法。该算法可以从级联信道同时分解BS-RIS信道和RIS-UE信道,并捕获RIS-UE信道的时间关系以进行预测。仿真结果表明,我们所提出的框架具有比传统信道估计算法更低的导频开销,并且所提出的基于SCLSTM的算法也可以鲁棒地和有效地实现更准确的CSI采集。
translated by 谷歌翻译